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We study analytically a continuum model for phase separation in binary polymer blends based on the
Flory—Huggins—de Gennes free energy, by means of the self-consistenhléingié-approach. The model is
solved for values of the parameters corresponding to the weak and strong segregation limits. For deep quenches
we identify a complex structure of intermediate regimes and crossovers characterized by the existence of a time
domain such that phase separation is pinned, followed by a preasymptotic regime, which in the scalar case
corresponds to surface diffusion. The duration of the pinning is analytically computed and diverges in the
strong segregation limit. Eventually a late-stage dynamics sets in, described by scaling laws and exponents
analogous to those of the corresponding small-molecule sysf&h863-651X97)04012-9

PACS numbdrs): 61.25.Hq, 64.75-g, 64.60.My

I. INTRODUCTION often a good approximation to the evolution of physical sys-
tems with finiten.

The kinetics of phase separation has been the subject of The application of this method to the equation of motion
considerable effort in recent yedis]. Among the most in- for a symmetric polymer blend allows one to write down
vestigated systems are binary polymer blefils beyond closed-form equations for the main observables and to study
their importance for technological applications, such systemanalytically the time evolution of the model for all values of
are extremely interesting also from a more fundamental pointhe parameters. In this way we can present results not only
of view. Due to the intrinsic connectivity of macromolecules, for the often-investigated WSL but also for the much less
phase separation in polymeric mixtures takes place on spasémown SSL, where a complex preasymptotic scenario can be
and time scales more easily accessible experimentally thadentified.
for small molecule systems. Furthermore, long-range inter- In particular, we find that the very late evolution belongs
actions along the chains greatly reduce the size of the criticab the same universality class of the small molecule case and
region, allowing one to disregard critical fluctuations inthe typical domain size grows as$? with the dynamical
many situations. On the other hand, connectivity gives rise t@xponentz=4, as usual in vectorial systems. For intermedi-
additional complexity in the system, which can in principle ate times, instead, different paths can be taken. More pre-
lead to a different behavior with respect to the small-cisely, while for shallow quenche8WNSL) the evolution
molecule case. Previous investigatidg have shown that closely reproduces what is known for small molecules, for
the global theoretical picture is the same for the asymptotideep quenche$SSL) additional terms, introduced in the
dynamics of a system in the weak segregation lif(WiSL),  equation of motion by the polymeric nature of the system,
but still many challenging problems remain unsolved: forcan play a relevant role. In this case, after the linear Cahn-
example, the origin of the pinning phenomenon observed itHilliard instability has occurred, the dynamics becomes ex-
experiments for off-critical quenches and the theoreticaceedingly slow and the nonequilibrium blend remains in a
study of the strong segregation li{BSL), which is hard to  pinned state over an appreciable time interval. This effect is
attack with the traditional numerical methods. due to the existence of a nonequilibrium partially ordered

In this paper we consider the most common theoreticattate that becomes stable for infinitely deep quenches or in-
model describing the kinetics of phase separation for a bifinitely long chains. For quenches of finite depth the system
nary polymer blend: the Cahn-Hilliard equation with the remains close to this state for a characteristic tigpewhich
Flory—Huggins—de Genng&HDG) free-energy functional. is shown to diverge in the SSL as a power law or exponen-
We propose a generalization of the above-mentioned modeially as the limits of the parameters are taken in different
to the case of a®(n) vector order-parameter field,(x,t), order. Later on it enters a second preasymptotic regime char-
with =1, ... n, and study the resulting equations in the acterized by a slow coarsening of domains whose typical size
largen limit. The extrapolation of the model to largeis a  grows ast'®. A crossover leads finally to the late stage
widely used technique of statistical mechanics, well suitedvhere domains grow as’*.
for Ginzburg-Landau—type models, which has become quite These results are derived using the langeaodel for
powerful in the study of several systerfd]. The largen phase ordering in polymer blends, which is an approximation
limit allows one to deal with the nonlinearities of the model of the real scalar model. It has been recognized in the small-
by means of a self-consistency prescription that effectivelynolecule case that this approximation leads to some results
linearizes the equations. The solution of the langeodel is  different from the properties of the corresponding scalar sys-
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tems. One of them is trivial. The exponents found using suclvhere (x,t) is the order-parameter fieltgz is the Boltz-
a method are valid for vectorial systems and therefore diffemann constanty, and oz are the Kuhn lengths of the two
from those valid for scalar systems: The exponea¥d for  species) is an effective interaction distance between mono-
the growth of domains in the large-model is known to mers, and the Flory-Huggins free energy 83
correspond t@=3 when the order parameter is scalar. An-
other known discrepancy is that within the langexpproxi- fen(y) 1+ ¢(xt) 1— (1)
mation the structure factor obeys the multiscaling symmetry, kaT 2N In[1+¢(x, )]+ T oNa

R . o . .. B A B
while systems for finiten exhibit scaling symmetry. This is
related to the different nature of the phase transition wien X
is infinite and in particular to the properties of the equilib- XIn[1=g(x,t)]+ Z[l—¢2(x,t)], €
rium state the large-model evolves towards. Although dis-
playing the correct structure factor, such a state is not trulyyhere N, and Ng are the degrees of polymerization of
ordered: The local order-parameter distribution remainghainsA and B; y measures the strength of repulsion be-
Gaussian instead of becoming bimodal as an effect of thgyeen unlike molecules and is inversely proportional to tem-
formation of domain$5]. Therefore, a multiscaling structure perature_ In the fo”owing we will a|WayS consider for sim-
factor in the largex model must be interpreted as reflecting pjicity a symmetric blend, for whichNy=Ng=N and
scaling symmetry in real systems. These differences are wel}, = ;.= 5. In this case the critical valugN=2 separates
known from the small-molecule case and can be easily takegigple states of the bleng/ll<2) from the thermodynami-
into account, but the absence of topological defects in thea|ly unstable region¥N>2) where the mixture decays in
largen model may make meaningless the extrapolation oo separate phases. The order parameter is related to the
the results for the large-model to the description of actual yolume fraction ofA molecules byy(x,t)=2¢(x,t) — 1.
evolution in scalar systems. More precisely, one may wonder The theoretical description of spinodal decomposition in
whether a model with no interfacéthe largen mode) can  pinary blends is based on the Cahn-Hilliard equation for the
describe with sufficient accuracy the dynamics in presence Gfme evolution of the order-parameter field, originally intro-

a field-dependent mobility, distinguishing bulkwhere  gyced for small-molecule systerf@]
|y|=1) from interfacegwhere||=0). This problem is dis-

cussed at length throughout the paper. The key point for the Ip(x,1)
answer is a close comparison of our equations with those of at
the largen model for ordinary Ginzburg-Landau systems. In

such systems the connection between larged scalar re- ; o . . .
sults is well established. This allows the interpretation of the\/\/here'\/I () s the mobility andz(x,t) is a Gaussian white

entire complex pattern of regimes and crossovers foun<r110ise with zero average gnd variance propqrtional to the tem-
o . . perature. For a symmetric blend the mobility

within the largen model for polymeric systems in terms of

concepts such as bulk and surface diffusion even if they can- ND

not be defined when=c«. Hence it turns out that the ana- M()= —[1—gA(x,1)] (5)

lytical approximate solution preserves most of the essential 4

physics of phase ordering also for systems more complex

than small-molecule mixtures. has been proposdd], whereD is a self-diffusion coeffi-
The paper is organized as follows. In Sec. Il the usuaFient. With these positions the Langevin evolution equation

equation describing phase separation for polymers is introof the order-parameter field is given by

duced and the largeimit model is deduced from it. Section

[l is devoted to the analytical solution of this model and to d¢(x,t) ND )

the identification of the different regimes. The findings of — 7~ 5 V' |[17#(X D7V

Sec. Il are verified and completed by means of a numerical

SF ()

—v. 50

M)V +7(x.1), 4

(1+ W(X,1)
N =0

solution of the larget limit equations in Sec. IV. Finally, in Y o2
Sec. V the results are discussed and conclusions are drawn. — S (X, t)— | N2+ —) V2i(x,t)
4 91— ¢(x,1)?]
Il. THE MODEL a2 (1)
, _ ———————;ﬂVMmUFH, )
Model blends are typically described by the Flory— 91— (x,1)7]

Huggins—de Gennes free-energy functior@l]
where we have neglected the thermal noise term since it is

E f possible to show, at least in the analog of this equation for
() :f dx FH(¥) + k()| Vr(x,t) 2}, (1) small-molecule sy_sterr[SLO,lJ], that the temperature is as-
kgT kgT ymptotically an irrelevant parameter below the order-

disorder line. The scalar model introduced so far can be gen-
with eralized to the case of an-component vectorial order
parameter (x,t)={i,(x,1)}, with a=1,...n. As de-
scribed in Appendix A, when the numbarof components
diverges the equation of motion for the single component
,(x,1) (we drop the indexx in the following) reads

2 2
oA O

181+ g(xD]  181—p(x0]

k()= +x\% ()
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ap(k,b) ND 1+ SY2(t) and vice versa. This is the weak segregation limit, which is
= T[l—S(t)]kz{ Tooin 7 ) also called the shallow quench condition, since it is usually
at ANS™H(t) 11-8"41) realized by loweringT just belowT,. For deep quenches
2 instead yN>2 (strong segregation limit the order-
_ KJF o_i parameter equilibrium value is very close tol because
4 9 [1-9(1)]? separated domains are almost pure.
2
A2yt ‘T—) kz] w(k,1) @) IIl. ANALYTICAL STUDY OF THE MODEL
9[1-9(t e
[1=50] In the following a high-temperature disordered initial con-
where by definiion  S(t)=(y2(x1)) and dition C(k,0)=A will be considered. Upon introducing the
Sy () =([Ve(x,1)]2). ’ three quantities
In the following the dynamics of systems undergoing 14
critical quenches[{y(xt))=0] wil be studied. In this L(t):( ENDazt) | 1
case the quantitie$(t) and S,(t) can be computed self- 9
consistently using the structure factor C(k,t)
=((k,t) (—k,t)), the Fourier transform of the real space , [t 1/a
pair connected correlation function, through A(t)=1 NDA“x 0[1_5( 7]dr (12
d
S(t)= f C(k,t g an
(1) K=a(2m) (k,t) 8 [ ~
t|[1-S(7)] 1 1+SY47)
L£%(t)=—ND J n -
and ® 0[ 4 INS(n) \1-s%n) X
dk 2
t):f K2C(k,1), ) o (1)
#O cazm 9 1-sn|9™ 13

whered is the spatial dimension of the system amds a

phenomenological ultraviolet momentum cutoff. The evolu-
tion equation of the structure factor can be obtained from Eq. Kt =A KT AR () + L4 2K2 (1) — K2 14
) 2 C(k,t)=Aexp{k?[A*(t)+ LAD1(2Ki() = KA}, (14)

Eq. (10) can be formally integrated, yielding

k) ND[1—S(t)]k? L+SH et
=— - n
at ANSYA(t) [1-SYA1) L3(t)
Ka(t)= (15
X 0% St 2[LA () +A%(Y)]
— _+ —_—
2
4 9 [1-s(n)] is the position of the peak providetf>0, as is the case for
o2 sufficiently long times in the phase-ordering region.
N2+ —) k2 C(K,t). (10) The introduction of the three quantiti¢$1)—(13) allows
91-S(1)] the description of the dynamical evolution in terms of their

competition. Depending on their relative size, the system ex-

Equation(10) and the self-consistency relatiof®) and (9 hibits different properties in subsequent time regimes, as will
constitute the integro-differential equations governing thepe described in detail below.
dynamics of the FHDG model in the largelimit and will be
the object of our study. Some differences occur between Eq.
(10) and its analog for small-molecule systep& The over-
all time-dependent factor2S(t) reflects the presence of a  For short times after the quench, assuming that the initial
field-dependent mobility as opposed to the constant valu8uctuationsA are not largeS(t) andS,(t) can be neglected
usually taken, the terms proportionaldd are a consequence N Eq.(10) and the system exhibits the usual linear behavior
of the order-parameter dependencex®fs) and do not ap- ©f phase ordering. The time evolution af(t) and L(t) is
pear in the equation for small molecules, and the logarithmi@asily computed
gon:;tigprthnlt?aﬁlﬁerem from the usual Ginzburg-Landau A(t)= (NDAZyt) ¥~ L (1) (16)

As we will see, in the phase separation of binary polymer
blends a key role is played by the prodygtl, setting how and
strongly segregated the two species are. Whtie2 the ND [t 12 [p 12
ab_so_lute value of_ the equilibrium order parameter in the co- E(t)z[— _f dr(—)(+2/N)} =[—(XN—2)t} .
existing phases is much smaller than 1, indicating that in 4 Jo 4
A-rich regions a high concentration Bfmolecules is present a7

A. Early stage
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As a consequence, in complete analogy with linear behavioscaling form(20) holds down tok=0. After the crossover
in small-molecule systems, the position of the maximum retime t* the usual linear behavior sets in and the order pa-

mains constant rameter saturates exponentially fast to the local equilibrium,
leading to an exponential growth &{t) and Sy(t).

XN -2 1/2
Km(t =[—} =Ko, (19
(¥ 8N(X\*+0%19) ° B. Pinned regime
while its height grows exponentially fast The linear regime continues until a timgsuch thatS(t,)

is close to the equilibrium valug(ec), which corresponds to
(19) the minima of the Flory-Huggins local potential. The subse-

quent behavior of the system strongly depends on the value
) o ) ) of x, N, and o. In the WSL S(»)<1 and therefore
During the very early stages of this linear regiffier times A(t)=(NDx\2t)Y4~L(t); the system enters immediately
t<t*, wheret* will be determined beloythe structure fac-  the asymptotic stage described in Sec. Il D. In the SSL in-
tor obeys an approximate scaling form. This can be showReaq, ‘the dynamical evolution of the langeequations en-
by considering that, according to EQ4), C(k,t) decays ters 5 quasistationary regime that extends over a time domain
for |k|>k,, over the typical distanceW(t)=[A*(t)  giverging whenyN— o and y/c?—: this case will be re-
+LA(1)] M =[ND(xA?*+?/9)t] . Since for small times  ferred to as the pinning limit. During this time interval no
W(t) is very large, the integrals definirg(t) andS,(t) are  gppreciable evolution aE(k,t) is observed and the blend is
domzlnated by the contributions for large momenta. For larggyractically pinned in a configuration characterized by phase-
k, kiy can be neglected in Eq14) and the structure factor separated domains of finite size. This phenomenon reflects
can be written as the existence of a static nonequilibrium configuration becom-

ing stable in the pinning limit. In order to see this let us
Clk,t)=Aexp{ — k(A% (D) + L4(t)]}=Aexp{—g[kL(t)]‘;}d cognsider the static solutions of the model. For general values
(20 of the parameters it is clear that

D(xN-2)?

B6AN( N2+ 02/9) "

C(km,t)=Aexp{

with g constant. Henc€(k,t) exhibits fork>k,, a scaling
form with respect to the growing length(t); S(t) andS,(t)
can be computed easily, yielding

C(k,»)=(2m)’S,8(k) (24

is a static solution{C/dt=0) of Eq.(10), where the choice
S(t)~AL(t)79,  Sy(t)~AL(t)"(@*+2), (21  of S,=3(=) as prefactor is dictated by the self-consistency
condition (8). The value ofS,, is fixed by requiring the so-
consistently with the assumption that they are small. Thidution (24) to be a minimum of the FHDG free energy. The
very early scaling regime is completely analogous to the reresulting condition is
gime found in small molecule systems for very short times

before the usual Cahn-Hilliard linear regi®2]. Its physi- 1/2

- . 1 1+S;
cal origin is the presence of totally uncorrelated fluctuations —IN 5| —x=0, (25
in the initial state, creating large gradients in concentration NS,© \1-S;

between neighboring regions: The square gradient is the

dominating contribution to the excess free energy. Then thevhich in the scalar case indicates that the order parameter
system lowers its free energy by reducing everywhere théies on the minima of the local potential. This is the equilib-
local order parameter so that the contribution of the squareium state towards which the system evolves for all finite
gradient is reduced. In this way the energy associated withalues of yN and y/o?, as can be checked using the
the local potential grows, but as long as it is much smallemsymptotic results of Sec. Il D. A different situation occurs
than the other contribution it does not affect the evolution:iinstead whenyN and x/o? both diverge. In this limit the
The behavior is diffusive as if the system werey@i=2.  equation of motion reads

This type of evolution ends when the global reduction of the

local order parameter ends up increasing the total free energy 4C(k,t) 1
because the local contribution grows more than the decrease —— =—xN D[1- S(t)]kz{ —27 szz] C(k,1).
in the square gradient one. In terms of the structure factor, (26)

this happens when the peak position is no longer much

. . . -
smaller than its widthW(t), i.e., fort=t* such that Integrating, one obtains for all times

K(t*)=[ A%(t*)+LA(t*) ]~ Y4 (22 .
from which C(k.t)=AeXp[ - k2A4(t)( k2— W) ] 27)

. 64N(xY\2+ a?/9)

D(N-2) (23)  Therefore, a static solution requirés(t=»=)= A, =const,
YN—

yielding
From Eq.(23) we conclude that the duration of the very

early scaling regime diverges for infinitely shallow — - 2 4( 2_i)
quenches. In the same limi,, vanishes and therefore the CO=Cplk)~A exp —k7A.| k aN?) |- 8)
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We notice from Eq.(12) that a constantA(t) implies Ld(t)weﬁ4(t)/4A4(t)_ (34)
S(t)=1 and this sets the value 4f, via the self-consistency
condition According to its definitior(13), to leading order ir§,. — S(t),
ik L£?(t) can be written as
A f Cy(k)=1. (29
2 d P t 81/2( T) _ S;LO/Z 1— S( T)
(2m) mt):—NDf [ gl ]
Hence, in the pinning limit the system does not evolve 0 4S™(7)

towards the free-energy ground state corresponding to com- 02 Sy(7)
plete order, as revealed by the lack of the Bragg pe&k=a — —2) , (35)
in Cy(k). Instead, a state partially ordered over a typical 9 [1-S(n)]

lengthk,,'=2+2\ is dynamically generated; despite having _ N

a higher free energy than the equilibrium configuration, theVith b=2[N(1-S,)]. Then, neglecting for sufficiently
state(28) and(29) is strictly asymptotic in the pinning limit. Small Kuhn lengtho the term containings,(t) in Eq. (35)
WhenyN andy/o? are large but finite, the additional terms and settingS..=1, we obtain

in Eq. (10) destabilize the pinned state: The system gets :

trapped around it for a time domain diverging in the pinning 204\ 2 _ali2) 12

limit. The durationr, of the interval during which no coars- L~ L)+ Jto[l ST(mldr, (39
ening practically occurs can be easily estimated, as reported

in Appendix B. It turns out that this time strongly depends onwheret, is the crossover time from pinning to this regime. In
how the pinning limit is approached, i.e., on the order of thethe same way, one finds

limits yN—o and y/o?—x. If one takesy/o?—x first

t
o~ explaxN}, (30 /\4(t)~/\4(t0)—|—ft [1-SY2(7)]dT. (37

wherea is a known constant, while whepN— oo first . . o
Assuming thatC(t) and A(t) diverge with time, we neglect

y |12 the constant terms in Eq$36) and (37). Equations(34),
) (31)  (36), and(37) admit then the solution

1/6 1/6, 1/4
This twofold behavior reflects the different terms that can A~ L)~ H(Int) ™, (38)

destabilize the pinned state. By comparing Ed)) and Eq. ) " S . ) )

(26) it turns out that Eq(10) contains two kinds of addi- With 1=S"(t)~t" ", consistently with the assumption of
tional terms: the logarithmic contribution and the terms pro-diverging £(t) andA(t). As a consequence, using Hg5),
portional toa?. The former is proportional to W and hence km(t)’ft (_Int) g o

destroys pinning wheiN is finite leading to Eq(30); the During this regime the dynamics is governed hyt),
latter are active whemr is nonvanishing and cause the decayWhich dominates ovek(t). With the help of definitiong11)

of the pinned state over the characteristic ti@d). It is and(12) itis clear that during this stage the system behaves
important to stress that the pinning regime occurs wher@S if the square gradient coefficientwere independent af,
phase separation has already taken place but is still inconk€-» as ifo=0. With that condition Eq(10) becomes per-
plete and therefore has nothing to do with the usual metastdectly analogous to the equation of motion for the large-

bility present during phase ordering, which decays via nucle@PProximation of a Ginzburg-Landau system with a field-
ation. dependent mobilityM () =1— ¢?; it is easily recognizable

that also in this case the analytical solution vyields
Km(t)~t~ Y6 This similarity with the Ginzburg-Landau sys-
tem helps in the understanding of the physical meaning of
In the SSL, after the end of pinning the structure factorthis regime. The scalar case for the small-molecule
has the form(14). During this regimeC(k,t) is sharply  Ginzburg-Landau problem with nonconstant mobility has
peaked aroundt,(t); this allows the evaluation d§(t) and  been studied by means of a Lifshitz-Slyozov approfkd]
S,(t) by the saddle-point technique, yielding and numerical simulationd 4]. The outcome of such inves-
tigations was that when=1 the typical length grows as’*

C. Surface diffusion regime

S(t)~ L%t ex LA(t) (32) anq the dominating grovx_/th mechanism is surface.diﬁysion.
AL +AYD)] This leads to the conclusion that also for a polymeric mixture
the time regime withk,,(t)~t~ ' in the largen model re-
and flects a surface diffusion regime in the corresponding scalar
model withk,(t) ~t~ 4 This is why(with an abuse of lan-
Sy(t)~L73(t)S(t). (33) guage we termed this regime as surface diffusive: Clearly,

no surfaces exist in the largemodel and no diffusion along
Requiring the saturation d(t) to its equilibrium valueS, them takes place. Nevertheless the behavior of the large-
and neglectingL (t) with respect toA(t), for sufficiently = model clearly reflects the prevalence of this growth mecha-
large y/o?, one has nism in the corresponding scalar system.
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D. Asymptotic regime

The behavior illustrated in the preceding subsection is not
yet asymptotic since\ (t)~t® cannot dominaté (t) ~t%* 10° | |
forever. When this occurs, the system enters the very late
stage of its temporal evolution. What follows is valid also for 10 L
the WSL; in such a cask(t) and A(t) are always propor-
tional totY* and the asymptotic regime begins right after the
linear one.

The analytic treatment of this late regime is again based
on the saddle-point technique, yielding E§2), and the re-
guest that the order-parameter field lies on the ground-state .
manifold S(t)=S.. From Egs. (11) and (12 10 0™ 10° 10° 07 107 10°
A(t)~L(t)~tY* and then Eq(32) gives 10°

—
=
=
w

-5

10° o 4

-6 |

LAt)~L4t)Int; (39

0—2
therefore

k(1) ~ (Int/t) 4, (40)

St

Here the two length& (t) andk,(t) diverge in the same 5
way up to a logarithmic factor yielding multiscaling pre-
cisely as for phase ordering in largeerdinary mixtureqd4| 10° | 7
and showing that the two models fall into the same univer-
sality class. Again, we can use the comparison with phase 10
separation in ordinary mixtures to extrapolate results for sca- 1
lar polymer blends: On the basis of what is knojiri,15
about small-molecule systems, a scaling regime is expected F|G. 1. Top: log-log plot ofS(t) vst for early times. The values
to be obeyed also for polymers for finite characterized by of the parameters afd=0.25x 10°, yN=10° A=1/2, ando=1.

a single diverging length growing a8?, with z=4 for the  Bottom: same plot foS,(t).

vector order parameter armk=3 in the physically relevant _

casen=1. The coarsening mechanism prevailing during this' "€ '[‘5‘5" decay of(t) follows very accurately the power
stage in scalar systems is bulk diffusion: Although stronglylaw t = found analyucﬂ/)g. The same agreement is found
suppressed in the SSL, it is not vanishing and, being assodior S2(t) with the decayt~>". Notice that the crossover_t2|me
ated with a faster domain growth, finally dominates overlS Very close to the estimate based on @): t*=4x10"".
surface diffusion. With regard to the following stages, in Fig.$(t) and

It is interesting to remark that the model for polymers haskm(t) are plotted versus time for values of the parameters in
the same asymptotic behavior of small molecules, but fofhe weak segregation limit. The linear behavior is clearly
nontrivial reasons. In ordinary mixturést), the dominating visible, characterized by a constant position of the peak. Itis
length during the late stage, is formed by the product of 6_followe_d by a sharp transition to f[he asymptotic regime, dur-
constant mobility times a constant square gradient coeffil"d Which the two plotted (:11/Jant|t|es decay as power laws. If
cient. For polymer blendk(t) is the result of a nonconstant Km(t) is fitted with (t/Int)**, the computed exponent is
M() times the field-dependent part a{): The expres- 1/z=0.253t0.003, in good agreement with the theoretical
sion for L(t) is the same in the Ginzburg-Landau case bevaluez=4. . o
cause the order-parameter dependence in the two factors can-FOr deep quenches in the strong segregation limit, the
cels out. Therefore, even if the asymptotic behavior of thisSituation is quite differentFig. 3. At the end of the linear
model for polymer blends is the same as for small moleculed®9ime, the onset of the very-late-stage dynamics is preceded

it is not correct to say that the field dependencévofind « by t_he two preasymptotic behaviors mentioned in Sec. Il
is irrelevant. During the first one the system undergoes an almost com-

plete stop; thereforek,,(t) remains at the value of the linear
IV. NUMERICAL RESULTS regime, WhilgSz(t) shows a pIaFeau that ext_ends over many
decades. This temporary stop in the evolution of the system
In this section we present the results of the numericals even better illustrated by plotting directly the structure
solution of the largex model. The solution is performed by factor C(k,t) for different times during the pinning regime
simple iteration of the discretized version of Eq%)—(9)  (Fig. 4). These curves are compared with the analytic expres-
with d=3 and 1024 values &. The diffusion coefficienD sion (28) of C,(Kk) in the pinning limit. Later the dynamics
is chosen equal to 4 and the number of monomers is fixed teestarts and Is dominated by the time-dependent mobility.
N=0.25x 10°. The value of the parametgris changed over The peak position an®,(t) go to zero as power laws, in
many orders of magnitude, so that we can clearly distinguisiyood agreement with the expected behakgrt~ %6 and
the different time regimes. S,~t~ 13, The agreement is not perfect because the system is
We start by considering the very early stages. The behawlready crossing over to the asymptotic behavior. The onset
ior of S(t) andS,(t) for very early times is shown in Fig. 1. of this last regime can be delayed by makiptp? bigger,




678

S,(t)

10 10°

10° 10 1

—-1/4

k()
=

10 10" 5 ] 10‘10 10'12 10"
t

FIG. 2. Top: log-log plot ofS,(t) vst for a quench in the weak
segregation limit. The values of the parametershre0.25x 10°,
xN=2.1,A=1/2, ando=1. Bottom: same plot fok,(t).

but this would also increase the duration of the pinned stage,
making the surface diffusion regime numerically unreach-
able. Finally, on times longer than those shown in the figure,
both quantities smoothly cross over to the asymptotic behav-
ior, which is the same as in the WSL.

The durationr, of the pinning is displayed in Fig. 5. In
the upper partr, is plotted versugy/o? for N strictly infi-
nite, showing a power-law behavior whose measured expo-
nent is 0.4%0.01, in very good agreement with the analyti-
cal estimate of E¢(31). In the lower part the same quantity,
computed fore=0, is plotted versugN, displaying an ex-
ponential dependence as predicted in &§). In the end, all
figures confirm the analytical results discussed above and the
existence of a complex structure of intermediate regimes and
crossovers, as summarized in Table I.

V. DISCUSSION

The solution of the larga- model for phase-separating
polymer blends leads naturally to a comparison with the
analogous results for small-molecule systems. In this way we
can identify which of the modifications introduced by the
macromolecular nature of the blend components are relevant.
We consider the effect of three modificatiorig: the mobil-
ity depending on the local order parameter and in particular
vanishing in pure phasesii) the local potential having a
double-well form, but a logarithmic expression, as opposed
to the usual polynomial; andii) the square gradient coeffi-

ke (1)
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segregation limit. The values of the parametersNire0.25x 10°,
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cient in the free energy having an additional contribution FIG. 4. Plot ofC(k,t) vst for the same parameters of Fig. 3 and
depending on the local order parameter, giving rise to twawo different times separated by two decades, compared with the
new terms in the chemical potential. The first two differencesanalytical expressiof 28).
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" ‘ For these limit values the mobility vanishes and the evolu-
tion is pinned. During the subsequent regime the nonconstant
mobility is relevant since the evolution is governed/bft),

10° L i which owes its time dependence to the order-parameter de-
pendence oM (). Finally, as already pointed out in Sec.
. 11l D, the asymptotic stage is governed by the growing length
10° L ] L(t), which is formally the same as in the small-molecule

case, but is actually the result of the field dependence of

M(#) and x(4).

10’ w : o ot Our aim is also to make statements about the real systems,
2 not only about the large- approximation to their temporal
evolution. Therefore, a word must be said about the delicate
problem of the connection between the systems we want to
study(scalar order parametesind those we are able to solve
analytically (vectorial order parameter with an infinite num-
ber of componenis For the small-molecule case we already

know that some properties of the solution for largerodel

0 7 do not hold for scalar systems. One of them is the multiscal-
- ing symmetry of the structure factor for long times: For finite
, n scaling symmetry holds. Another difference is the value of
0 ] the dynamical exponert which is known to be 3 for scalar

systems and 4 when the order parameter is vectonalud-
ing the largen mode).
150 2.0 =0 50 These differences are known and therefore can be taken
N into account easily. More dangerous may in principle be an-
other difference between the largeand the corresponding

FIG. 5. Top: log-log plot ofr, vs x/o? for N=c showing the  scalar model: The latter forms ordered domains separated by
power-law divergence of the pinning duration. Bottom: lin-log plot well-defined interfaces; the former does not support inter-
of 7, vs xN for ¢=0, displaying that in this limitr, diverges  faces and actually evolves towards a state that is not truly
exponentially. In all cases, was determined by choosing=10"*.  ordered[5]. This difference could be critical for a polymer

blend in which interfaces play a key role, through the field
are actually not restricted to polymer blends and can be cordependence of the mobility and of the square gradient coef-
sidered also for small molecules; the third is instead strictlyficient. Nevertheless, we believe that in this case the picture
related to the macromolecular nature of the mixture. provided by the larger model is a close representation of

In the WSL our results confirm what was already knownwhat actually goes on in scalar systems.
from previous numerical simulations of the full continuum  This conclusion relies on the comparison of our results
equation[3]. The system belongs to the same universalitywith those obtained for small-molecule Ginzburg-Landau
class of small molecule blends and all additional terms of thesystems within the larga-approximation with constant and
model turn out to be irrelevant during the whole dynamicalnonconstant mobility. All the behaviors we find can be found
process. This is not surprising when the scalar system ialso in largen models for Ginzburg-Landau systems, where
considered. In the WSL separated phases are not pure: Thieey are interpreted as the result of different physical mecha-
equilibrium order parameter in phase-separated domains iEsms governing growth. By analogy we can describe our
far from —1 and 1; in such conditiond () andx(#) have largen results as the effect of the interplay of competing
small local variations negligible compared to the averagecoarsening mechanisms for scalar polymer blends. The pin-
constant terms. ning regime, the subsequent regime characterized=b§,

The situation is much more interesting in the SSL. It turnsand the asymptotic stage are all very clearly interpreted in
out that all three modifications are relevant in this case. Théerms of the growth processes occurring in scalar polymer
logarithmic expression fof g, pushes the minima of the mixtures.
local potential close to-1 and +1 exponentially withyN. In particular, two are the mechanisms driving coarsening

TABLE |. Summary of the time dependence of the important quantities during the different stages. The
third and fourth time regimes are observable only w1 andy/o?>1.

Regime Early scaling Linear Pinned Surface diffusion Asymptotic
S(t) a4 expt) const const const

Sz(t) t—(d+2)/4 exp([) const t—l/3(|nt)—1/2 t—l/2(|nt)—1/2

Ky t(t) const const const tY8(Int)~24 (t/Int)*4

L(t) t12 t1? const tY8(Int)¥4 (tint)v4

A(t) tl/4 tll4 const tl/G tl/4
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in binary blends. The first is bulk diffusion, also called the we are able to investigate the strong segregation limit. From
Lifshitz-Slyozov or evaporation-condensation mechaniém: our study a plausible explanation of the experimental evi-
molecules evaporate from high-curvature regionsAeich dence comes out. For extremely deep quenches all growth
domain interfaces; they diffuse iB-rich regions and con- mechanisms are suppressed and the system is pinned in a
densate orA-rich domains with lower curvature. This pro- configuration out of equilibrium. This is the pinning de-
cess makes smaller domains shrink and larger ones grow; $cribed in Sec. Il B and does not depend on concentration,
is associated with &3 growth law becoming for n>1.  i.€., it happens also for critical quenches. It is very unlikely
The competing mechanism is the diffusion of moleculesthat this kind of pinning is observed in experiments since it
along domain surfaces in order to minimize the interfacialProbably requires unrealistically low temperatures. The pin-
energy. This process has the effect of changing the shagdng phenomenon observed experimentally is instead more
(but not the volumgof single domains and is associated with likely related to intermediate values giN, such that bulk
z=4 (z=6 in the corresponding largedimit). The slower diffusion is inhibited while surface diffusion is not. This
growth law explains why surface diffusion is not observed inwould explain both the unarrested growth for critical
usual small-molecule systems and in polymers in the wsLquenches and the freezing for off-critical ones. When the
Bulk diffusion always prevails. For deep quenches insteadgoncentration is critical an interconnected pattern is formed
both mechanisms are slowed down, but in different fashiongr both phases and surface diffusion can drive the system to
Surface diffusion depends little on temperature and is onlynacroscopical phase separation. When the quench is suffi-
weakly suppressed whefi—0. On the other hand, the ciently off critical instead, the minority phase forms nonper-
evaporation process needed for the Lifshitz-Slyozov mechatolating droplets embedded in a matrix of the majority
nism is activated and therefore exponentially inhibited forPhase. Surface diffusion can only lead to a partial phase
deep quenches: Its probability is proportional toSeparation and coarsening stops when droplets are spherical.
exp(—AF/ksT) and the free-energy change involved by theHowever,_on much longer times, the residual bulk d|ffgS|on
evaporation of a macromoleculeAs ~kgTyN. In this way should drlve.the system to complete phase separation. In
we can interpret the succession of stages occurring in th@rder to confirm this scenario further work on the numerical
SSL: When both growth mechanisms are inhibited the Sysgolutlon of the scalar ord_er-param_eter equation in the SSL is
tem is pinned; later growth starts, driven by surface diffu-in Progress. More experiments, aimed at verifying the pre-
sion, which is slow but only weakly suppressed. Eventuallydiction that coarsening should restart for very long times
bulk diffusion prevails and phase separation enters its lat@fter the pinning in off-critical quenches, would also be very

stage. helpful.
Within this context it is difficult to understand why the
pinning limit requiresy/ o>— in addition toyN—. It is ACKNOWLEDGMENTS

plausible that the additional condition is required only for the . , . ) .

largen model and does not apply to scalar systems. This is We thank Marco Zannetti for an interesting discussion.

suggested by the observation that the condijjda®—x is

needed in order to neglect the term proportionaBs(t) in APPENDIX A

Eq. (10). Such a term appears in the equation with same role ) )

of those derived from the local potential in the free energy, e consider the Flory—Huggins—de Gennes free-energy

However, it actually comes from the nonlocal part of the freefunctional F(¢) and the mobilityM (¢); in order to gener-

energy: It becomes “local’(i.e., not proportional té) only ahzg them to thﬁe vector order-parameter case we require

as effect of the large- limit. It is very likely that in the Fv(#) and My(¢), the vectorial counterparts of the free

scalar case the evolution freezes eveg/if->< . energy and of the mobility, to b®&(n) symmetric functions
We finally discuss the relevance of the previous results irof (x,t). With this position the field dependence occurs

observed in off-critical quenches. Experiments show that -«n 2 12 7 —f3n 21172
o . . =25 X, t and |V (x,t) | ={Z 5 1[Vz¢, (Xt .
some polymeric mixtures quenched in the unstable region Olfn[th%_}:rg(en )Ii]mit i olnew(reqzltrei tﬁhel[siﬁgle( co)r]ngonent

their phase diagram dramatically change their behavior de- (x,1) to remain finite, the square modulus of vector quan-
pending on the average concentration of the blend compch?“ ' tb i ' db ?ﬂ der to k it fi ?
nents[16,17]. When the concentration is critical growth pro- les must be norm_a 1zed Dy r/In order fo keep it fintte.
ceeds as usual. When concentration is sufficiently off criticaHence the whole field dependence ©{(y) and M\(4)
coarsening starts but later stops, before the system reachescurs in the vectorial case through(x,t)| and|V(x,t)],
equilibrium, in a frozen configuration with partially sepa- where?(x,t)zn‘l’z@(x,t). Moreover, one requireEV(lZ)
rated phases. The specific mechanism responsible for this be an extensive quantity in the number of components
phenomenon is still poorly understood and this topic hasn summary, a proper generalization to the vector case is
been the subject of discussion recentl,19. The conjec-  achieved by substituting everywhepex,t) and|Vy(x,t)|

ture that inhibition of bulk diffusion due to free-energy bar- with |Wx,t) aNd|VRX,t)|, respectively in Eqs(1)—(3) and

riers may play a fundamental role has been put fdi, -y ;
but so far no convincing test of this hypothesis has beeés) and multiplyingF () by n. We obtain
done: Direct numerical integration of the full equation of - —
motion is easily performed only in the WSL and no pinning Fv(¥) _ J dx fen(l9)) + (9| Vaixt)
has been detectdd9]; for deep quenches spurious numeri- kgT kgT w(ly X,
cal instabilities arise. Using the largelimit approximation (A1)

2
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wherex(||) andfr(|#]) are still given by expression(®) approachgd. We defing, with refer_enc_e to the b_ehavior of
and(3). The Cahn-Hilliard equation for the time evolution of the quantityS(t). As can be seen in Fig. $,(t) displays a

a generic component of the vector fieIdJ/(x,t) reads plateau during the pinned stage. More precisely, it reaches a
maximum fort=t, at the end of the linear regime and de-

creases extremely slowly until the crossover tiree ,+ 6, ,
, (A2)  when the pinned stage ends and the system enters the subse-
quent time evolution characterized by a more rafpdwer

Oy

T law) decrease 08,(t). A quantitative definition ob), can be
where MV(’#)_M(WD IS given by Eq.(5) and we have obtained from the relative variation & by setting
neglected thermal noise as discussed in Sec. Il. Then, con-

sidering a symmetric blend, the Langevin evolution of Sa(ty) = Syltp+ 6p)

Waxt) _ o SF ()

" M($)V

W.(x,t) is obtained St €, (BY)
M: EV. [ [1—|Wx,t)|2] wheree is an arbitrarily fixed small number. Sin&(t) is
at 2 approximately constant during the pinned stage one has
1 (1+[pOt)]| gt x IS,(1)
V| — i e -z = =7
ANt 1—|¢<x,t>|)|¢(x,t>| 4y L T
_()\ZXJF ‘7_2 )Vzl/l (x.t) and therefore, using E¢B1),
oi-[y(xvf21) " s 1
) | — 2 ] o) 0p=—632<tp>[7 . ] - 9
— — Vi (X,1) . A3 =
o1 px 07| p

o _ 0, is the actual duration of the pinned regime, but it should
Forn=1 one recovers Ed6). In the largen limit, summing  pe noticed that in the pinning limitC/4t is proportional to
over vector components averages the system over an egN, which goes to infinity. All times are divided by this

semble of configurations and hence factor and hence vanish. In order to compare the duration of
Lo the pinned stage for different values o, ¢, must be res-
sl 2_ i = 2 —2 — caled by the appropriate intrinsic time factoyl¥; we there-
n“_ﬂ' Sl n“_rlnﬁzl VD= (g t)=S(0), fore define the duratiom, of pinning as

(Ad) 7p=xNb,. (B4)

where angular brackets denote the ensemble average, trans- - o
lational invariance has been assumed, St does not de- The derivative in Eq(B3) can be computed by considering

pend ona due to internal symmetry. Analogously that C(k,t=t,)=C,(k) defined in Eq(28) so that
_ 120 3S,(t) do% _aC(k,t)
im [V (x,0)[2= im = 3, [V, (60 12= ([ Vi (x,1) 12 - [ e
n%| v | n—eA=1 oV (v 1 Ml J@emt A
=S(0. (AS5) =~ YND(1~S,)(\*Sgp—Syp/4),  (BS)

Hence Fourier transforming to reciprocal space, the evoluwhere
tion equation for the order-parameter field reads

d
Akt ND 1+ SVt Snp= St )=f—k”C (k) (B6)
i )=——[1—S(t)]k2 In (t) p p (2mi P
at 2 ANSYAt) | 1-SMAt)
) are known quantities. By inserting Eq®3) and (B5) into
X, Sa(t) Eqg. (B4), one obtains an expression fog
4 9 [1-s(m7P
682p
2 o’ ) 2 P D (1-S,)(\?Sgy— Su/d)’ 67
+{ N x+ ————=—=k k,t), A6 “>p P~ S4p
X+ grr—sm) K] YD (A6)
where only the valueS, of S(t) during the pinned stage
where the component index has been dropped. remains to be determined. This is calculated by imposing
that
APPENDIX B
IS(t)
In this appendix we derive the expressid§) and(31) ot =0. (B8)

for the duration of the pinned stage when the pinning limit is =t
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When evaluating this condition the outcome depends on howetting insteadyN— o with nonvanishingo?,
the pinning is approached, i.e., on the order of the limits

xN—o andy/o?—. When one takeg/ o>— = with large
but fixedN, one has

1
0=—xND(1- sp){ —1/4+ AN In( T ng) Sp
+>\254p} . (B9)
With simple algebra one obtains
—4\?%S
1—sp=4exp{—XN M] (B10)
S2p
and therefore
—4\%S
Tp~exp‘ XN[M} ] (B11)
S2p

1 Sy
4 X 9(1-S,)?

o=—XND(1—sp)I ]SZp

2
2
+| N2+ o Sp)}sélp], (B12)
yielding
2 —-1/2
X
1-S = \/—p(—z) (B13)
P I(Spplb—N2Syp)\
and therefore
1/2
X
rp~(?) : (B14)
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