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Coarsening and pinning in the self-consistent solution
of polymer blends phase-separation kinetics
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We study analytically a continuum model for phase separation in binary polymer blends based on the
Flory–Huggins–de Gennes free energy, by means of the self-consistent large-n limit approach. The model is
solved for values of the parameters corresponding to the weak and strong segregation limits. For deep quenches
we identify a complex structure of intermediate regimes and crossovers characterized by the existence of a time
domain such that phase separation is pinned, followed by a preasymptotic regime, which in the scalar case
corresponds to surface diffusion. The duration of the pinning is analytically computed and diverges in the
strong segregation limit. Eventually a late-stage dynamics sets in, described by scaling laws and exponents
analogous to those of the corresponding small-molecule systems.@S1063-651X~97!04012-9#

PACS number~s!: 61.25.Hq, 64.75.1g, 64.60.My
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I. INTRODUCTION

The kinetics of phase separation has been the subje
considerable effort in recent years@1#. Among the most in-
vestigated systems are binary polymer blends@2#; beyond
their importance for technological applications, such syste
are extremely interesting also from a more fundamental p
of view. Due to the intrinsic connectivity of macromolecule
phase separation in polymeric mixtures takes place on s
and time scales more easily accessible experimentally
for small molecule systems. Furthermore, long-range in
actions along the chains greatly reduce the size of the cri
region, allowing one to disregard critical fluctuations
many situations. On the other hand, connectivity gives ris
additional complexity in the system, which can in princip
lead to a different behavior with respect to the sma
molecule case. Previous investigations@3# have shown that
the global theoretical picture is the same for the asympt
dynamics of a system in the weak segregation limit~WSL!,
but still many challenging problems remain unsolved:
example, the origin of the pinning phenomenon observed
experiments for off-critical quenches and the theoreti
study of the strong segregation limit~SSL!, which is hard to
attack with the traditional numerical methods.

In this paper we consider the most common theoret
model describing the kinetics of phase separation for a
nary polymer blend: the Cahn-Hilliard equation with th
Flory–Huggins–de Gennes~FHDG! free-energy functional.
We propose a generalization of the above-mentioned m
to the case of anO(n) vector order-parameter fieldca(x,t),
with a51, . . . ,n, and study the resulting equations in th
large-n limit. The extrapolation of the model to largen is a
widely used technique of statistical mechanics, well sui
for Ginzburg-Landau–type models, which has become q
powerful in the study of several systems@4#. The large-n
limit allows one to deal with the nonlinearities of the mod
by means of a self-consistency prescription that effectiv
linearizes the equations. The solution of the large-n model is
571063-651X/98/57~1!/672~11!/$15.00
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often a good approximation to the evolution of physical s
tems with finiten.

The application of this method to the equation of moti
for a symmetric polymer blend allows one to write dow
closed-form equations for the main observables and to st
analytically the time evolution of the model for all values
the parameters. In this way we can present results not o
for the often-investigated WSL but also for the much le
known SSL, where a complex preasymptotic scenario can
identified.

In particular, we find that the very late evolution belon
to the same universality class of the small molecule case
the typical domain size grows ast1/z with the dynamical
exponentz54, as usual in vectorial systems. For interme
ate times, instead, different paths can be taken. More
cisely, while for shallow quenches~WSL! the evolution
closely reproduces what is known for small molecules,
deep quenches~SSL! additional terms, introduced in th
equation of motion by the polymeric nature of the syste
can play a relevant role. In this case, after the linear Ca
Hilliard instability has occurred, the dynamics becomes
ceedingly slow and the nonequilibrium blend remains in
pinned state over an appreciable time interval. This effec
due to the existence of a nonequilibrium partially order
state that becomes stable for infinitely deep quenches o
finitely long chains. For quenches of finite depth the syst
remains close to this state for a characteristic timetp , which
is shown to diverge in the SSL as a power law or expon
tially as the limits of the parameters are taken in differe
order. Later on it enters a second preasymptotic regime c
acterized by a slow coarsening of domains whose typical
grows ast1/6. A crossover leads finally to the late stag
where domains grow ast1/4.

These results are derived using the large-n model for
phase ordering in polymer blends, which is an approximat
of the real scalar model. It has been recognized in the sm
molecule case that this approximation leads to some res
different from the properties of the corresponding scalar s
672 © 1998 The American Physical Society
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57 673COARSENING AND PINNING IN THE SELF- . . .
tems. One of them is trivial. The exponents found using s
a method are valid for vectorial systems and therefore di
from those valid for scalar systems: The exponentz54 for
the growth of domains in the large-n model is known to
correspond toz53 when the order parameter is scalar. A
other known discrepancy is that within the large-n approxi-
mation the structure factor obeys the multiscaling symme
while systems for finiten exhibit scaling symmetry. This is
related to the different nature of the phase transition when
is infinite and in particular to the properties of the equili
rium state the large-n model evolves towards. Although dis
playing the correct structure factor, such a state is not tr
ordered: The local order-parameter distribution rema
Gaussian instead of becoming bimodal as an effect of
formation of domains@5#. Therefore, a multiscaling structur
factor in the large-n model must be interpreted as reflectin
scaling symmetry in real systems. These differences are
known from the small-molecule case and can be easily ta
into account, but the absence of topological defects in
large-n model may make meaningless the extrapolation
the results for the large-n model to the description of actua
evolution in scalar systems. More precisely, one may won
whether a model with no interfaces~the large-n model! can
describe with sufficient accuracy the dynamics in presenc
a field-dependent mobility, distinguishing bulk~where
ucu.1) from interfaces~whereucu.0). This problem is dis-
cussed at length throughout the paper. The key point for
answer is a close comparison of our equations with thos
the large-n model for ordinary Ginzburg-Landau systems.
such systems the connection between large-n and scalar re-
sults is well established. This allows the interpretation of
entire complex pattern of regimes and crossovers fo
within the large-n model for polymeric systems in terms o
concepts such as bulk and surface diffusion even if they c
not be defined whenn5`. Hence it turns out that the ana
lytical approximate solution preserves most of the essen
physics of phase ordering also for systems more comp
than small-molecule mixtures.

The paper is organized as follows. In Sec. II the us
equation describing phase separation for polymers is in
duced and the large-n limit model is deduced from it. Section
III is devoted to the analytical solution of this model and
the identification of the different regimes. The findings
Sec. III are verified and completed by means of a numer
solution of the large-n limit equations in Sec. IV. Finally, in
Sec. V the results are discussed and conclusions are dr

II. THE MODEL

Model blends are typically described by the Flory
Huggins–de Gennes free-energy functional@6,7#

F~c!

kBT
5E dxF f FH~c!

kBT
1k~c!U¹c~x,t !U2G , ~1!

with

k~c!5
sA

2

18@11c~x,t !#
1

sB
2

18@12c~x,t !#
1xl2, ~2!
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wherec(x,t) is the order-parameter field,kB is the Boltz-
mann constant,sA andsB are the Kuhn lengths of the two
species,l is an effective interaction distance between mon
mers, and the Flory-Huggins free energy is@8#

f FH~c!

kBT
5

11c~x,t !

2NA
ln@11c~x,t !#1

12c~x,t !

2NB

3 ln@12c~x,t !#1
x

4
@12c2~x,t !#, ~3!

where NA and NB are the degrees of polymerization o
chainsA and B; x measures the strength of repulsion b
tween unlike molecules and is inversely proportional to te
perature. In the following we will always consider for sim
plicity a symmetric blend, for whichNA5NB5N and
sA5sB5s. In this case the critical valuexN52 separates
stable states of the blend (xN,2) from the thermodynami-
cally unstable region (xN.2) where the mixture decays i
two separate phases. The order parameter is related to
volume fraction ofA molecules byc(x,t)52f(x,t)21.

The theoretical description of spinodal decomposition
binary blends is based on the Cahn-Hilliard equation for
time evolution of the order-parameter field, originally intr
duced for small-molecule systems@9#

]c~x,t !

]t
5¹•FM ~c!¹

dF~c!

dc G1h~x,t !, ~4!

whereM (c) is the mobility andh(x,t) is a Gaussian white
noise with zero average and variance proportional to the t
perature. For a symmetric blend the mobility

M ~c!5
ND

4
@12c2~x,t !# ~5!

has been proposed@6#, whereD is a self-diffusion coeffi-
cient. With these positions the Langevin evolution equat
of the order-parameter field is given by

]c~x,t !

]t
5

ND

2
¹•H @12c~x,t !2#¹F 1

4N
lnS 11c~x,t !

12c~x,t ! D
2

x

4
c~x,t !2S l2x1

s2

9@12c~x,t !2#
D ¹2c~x,t !

2
s2c~x,t !

9@12c~x,t !2#2
@¹c~x,t !#2G J , ~6!

where we have neglected the thermal noise term since
possible to show, at least in the analog of this equation
small-molecule systems@10,11#, that the temperature is as
ymptotically an irrelevant parameter below the orde
disorder line. The scalar model introduced so far can be g
eralized to the case of ann-component vectorial orde
parameterc(x,t)[$ca(x,t)%, with a51, . . . ,n. As de-
scribed in Appendix A, when the numbern of components
diverges the equation of motion for the single compon
ca(x,t) ~we drop the indexa in the following! reads
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674 57CLAUDIO CASTELLANO AND FEDERICO CORBERI
]c~k,t !

]t
52

ND

2
@12S~ t !#k2H 1

4NS1/2~ t !
lnS 11S1/2~ t !

12S1/2~ t !
D

2
x

4
1

s2

9

S2~ t !

@12S~ t !#2

1S l2x1
s2

9@12S~ t !# D k2J c~k,t !, ~7!

where by definition S(t)[^c2(x,t)& and
S2(t)[^@¹c(x,t)#2&.

In the following the dynamics of systems undergoi
critical quenches@^c(x,t)&50# will be studied. In this
case the quantitiesS(t) and S2(t) can be computed self
consistently using the structure factor C(k,t)
5^c(k,t)c(2k,t)&, the Fourier transform of the real spac
pair connected correlation function, through

S~ t !5E
uku,q

dk

~2p!d
C~k,t ! ~8!

and

S2~ t !5E
uku,q

dk

~2p!d
k2C~k,t !, ~9!

whered is the spatial dimension of the system andq is a
phenomenological ultraviolet momentum cutoff. The evo
tion equation of the structure factor can be obtained from
~7! as

]C~k,t !

]t
52ND@12S~ t !#k2H 1

4NS1/2~ t !
lnF11S1/2~ t !

12S1/2~ t !
G

2
x

4
1

s2

9

S2~ t !

@12S~ t !#2

1S l2x1
s2

9@12S~ t !# D k2J C~k,t !. ~10!

Equation~10! and the self-consistency relations~8! and ~9!
constitute the integro-differential equations governing
dynamics of the FHDG model in the large-n limit and will be
the object of our study. Some differences occur between
~10! and its analog for small-molecule systems@4#: The over-
all time-dependent factor 12S(t) reflects the presence of
field-dependent mobility as opposed to the constant va
usually taken, the terms proportional tos2 are a consequenc
of the order-parameter dependence ofk(c) and do not ap-
pear in the equation for small molecules, and the logarith
form of f FH is different from the usual Ginzburg-Landa
quartic potential.

As we will see, in the phase separation of binary polym
blends a key role is played by the productxN, setting how
strongly segregated the two species are. WhenxN*2 the
absolute value of the equilibrium order parameter in the
existing phases is much smaller than 1, indicating tha
A-rich regions a high concentration ofB molecules is presen
-
q.

e

q.

e

ic

r
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n

and vice versa. This is the weak segregation limit, which
also called the shallow quench condition, since it is usua
realized by loweringT just below Tc . For deep quenche
instead xN@2 ~strong segregation limit!; the order-
parameter equilibrium value is very close to61 because
separated domains are almost pure.

III. ANALYTICAL STUDY OF THE MODEL

In the following a high-temperature disordered initial co
dition C(k,0)5D will be considered. Upon introducing th
three quantities

L~ t !5S 1

9
NDs2t D 1/4

, ~11!

L~ t !5H NDl2xE
0

t

@12S~t!#dtJ 1/4

, ~12!

and

L2~ t !52NDE
0

tH @12S~t!#

4 F 1

NS1/2~t!
lnS 11S1/2~t!

12S1/2~t!
D 2xG

1
s2

9

S2~t!

12S~t!J dt, ~13!

Eq. ~10! can be formally integrated, yielding

C~k,t !5Dexp$k2@L4~ t !1L4~ t !#~2km
2 ~ t !2k2!%, ~14!

where

km
2 ~ t !5

L2~ t !

2@L4~ t !1L4~ t !#
~15!

is the position of the peak providedL2.0, as is the case fo
sufficiently long times in the phase-ordering region.

The introduction of the three quantities~11!–~13! allows
the description of the dynamical evolution in terms of th
competition. Depending on their relative size, the system
hibits different properties in subsequent time regimes, as
be described in detail below.

A. Early stage

For short times after the quench, assuming that the in
fluctuationsD are not large,S(t) andS2(t) can be neglected
in Eq. ~10! and the system exhibits the usual linear behav
of phase ordering. The time evolution ofL(t) andL(t) is
easily computed

L~ t !5~NDl2xt !1/4;L~ t ! ~16!

and

L~ t !5F2
ND

4 E
0

t

dt~2x12/N!G1/2

5FD

4
~xN22!t G1/2

.

~17!
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57 675COARSENING AND PINNING IN THE SELF- . . .
As a consequence, in complete analogy with linear beha
in small-molecule systems, the position of the maximum
mains constant

km~ t !5F xN22

8N~xl21s2/9!G
1/2

[k0 , ~18!

while its height grows exponentially fast

C~km ,t !5DexpF D~xN22!2

64N~xl21s2/9!
t G . ~19!

During the very early stages of this linear regime~for times
t!t* , wheret* will be determined below! the structure fac-
tor obeys an approximate scaling form. This can be sho
by considering that, according to Eq.~14!, C(k,t) decays
for uku.km over the typical distanceW(t)5@L4(t)
1L4(t)] 21/45@ND(xl21s2/9)t#21/4. Since for small times
W(t) is very large, the integrals definingS(t) andS2(t) are
dominated by the contributions for large momenta. For la
k, km

2 can be neglected in Eq.~14! and the structure facto
can be written as

C~k,t !5Dexp$2k4@L4~ t !1L4~ t !#%5Dexp$2g@kL~ t !#4%,
~20!

with g constant. HenceC(k,t) exhibits fork@km a scaling
form with respect to the growing lengthL(t); S(t) andS2(t)
can be computed easily, yielding

S~ t !;DL~ t !2d, S2~ t !;DL~ t !2~d12!, ~21!

consistently with the assumption that they are small. T
very early scaling regime is completely analogous to the
gime found in small molecule systems for very short tim
before the usual Cahn-Hilliard linear regime@12#. Its physi-
cal origin is the presence of totally uncorrelated fluctuatio
in the initial state, creating large gradients in concentrat
between neighboring regions: The square gradient is
dominating contribution to the excess free energy. Then
system lowers its free energy by reducing everywhere
local order parameter so that the contribution of the squ
gradient is reduced. In this way the energy associated w
the local potential grows, but as long as it is much sma
than the other contribution it does not affect the evolutio
The behavior is diffusive as if the system were atxN52.
This type of evolution ends when the global reduction of
local order parameter ends up increasing the total free en
because the local contribution grows more than the decr
in the square gradient one. In terms of the structure fac
this happens when the peak position is no longer m
smaller than its widthW(t), i.e., for t5t* such that

km~ t* !.@L4~ t* !1L4~ t* !#21/4, ~22!

from which

t* 5
64N~xl21s2/9!

D~xN22!2 . ~23!

From Eq. ~23! we conclude that the duration of the ve
early scaling regime diverges for infinitely shallo
quenches. In the same limitkm vanishes and therefore th
or
-
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scaling form~20! holds down tok50. After the crossover
time t* the usual linear behavior sets in and the order
rameter saturates exponentially fast to the local equilibriu
leading to an exponential growth ofS(t) andS2(t).

B. Pinned regime

The linear regime continues until a timet0 such thatS(t0)
is close to the equilibrium valueS(`), which corresponds to
the minima of the Flory-Huggins local potential. The subs
quent behavior of the system strongly depends on the v
of x, N, and s. In the WSL S(`)!1 and therefore
L(t)5(NDxl2t)1/4;L(t); the system enters immediate
the asymptotic stage described in Sec. III D. In the SSL
stead, the dynamical evolution of the large-n equations en-
ters a quasistationary regime that extends over a time dom
diverging whenxN→` andx/s2→`; this case will be re-
ferred to as the pinning limit. During this time interval n
appreciable evolution ofC(k,t) is observed and the blend i
practically pinned in a configuration characterized by pha
separated domains of finite size. This phenomenon refl
the existence of a static nonequilibrium configuration beco
ing stable in the pinning limit. In order to see this let u
consider the static solutions of the model. For general val
of the parameters it is clear that

C~k,`!5~2p!dS`d~k! ~24!

is a static solution (]C/]t50) of Eq.~10!, where the choice
of S`[S(`) as prefactor is dictated by the self-consisten
condition ~8!. The value ofS` is fixed by requiring the so-
lution ~24! to be a minimum of the FHDG free energy. Th
resulting condition is

1

NS̀1/2
lnS 11S`

1/2

12S`
1/2D 2x50, ~25!

which in the scalar case indicates that the order param
lies on the minima of the local potential. This is the equili
rium state towards which the system evolves for all fin
values of xN and x/s2, as can be checked using th
asymptotic results of Sec. III D. A different situation occu
instead whenxN and x/s2 both diverge. In this limit the
equation of motion reads

]C~k,t !

]t
52xND@12S~ t !#k2H 2

1

4
1l2k2J C~k,t !.

~26!

Integrating, one obtains for all times

C~k,t !5DexpH 2k2L4~ t !S k22
1

4l2D J . ~27!

Therefore, a static solution requiresL(t5`)5L`5const,
yielding

C~k,t ![Cp~k!;D expH 2k2L`
4 S k22

1

4l2D J . ~28!
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676 57CLAUDIO CASTELLANO AND FEDERICO CORBERI
We notice from Eq.~12! that a constantL(t) implies
S(t)51 and this sets the value ofL` via the self-consistency
condition

DE dk

~2p!d
Cp~k!51. ~29!

Hence, in the pinning limit the system does not evo
towards the free-energy ground state corresponding to c
plete order, as revealed by the lack of the Bragg peak atk50
in Cp(k). Instead, a state partially ordered over a typi
lengthkm

2152A2l is dynamically generated; despite havin
a higher free energy than the equilibrium configuration,
state~28! and~29! is strictly asymptotic in the pinning limit.
WhenxN andx/s2 are large but finite, the additional term
in Eq. ~10! destabilize the pinned state: The system g
trapped around it for a time domain diverging in the pinni
limit. The durationtp of the interval during which no coars
ening practically occurs can be easily estimated, as repo
in Appendix B. It turns out that this time strongly depends
how the pinning limit is approached, i.e., on the order of
limits xN→` andx/s2→`. If one takesx/s2→` first

tp;exp$axN%, ~30!

wherea is a known constant, while whenxN→` first

tp;S x

s2D 1/2

. ~31!

This twofold behavior reflects the different terms that c
destabilize the pinned state. By comparing Eq.~10! and Eq.
~26! it turns out that Eq.~10! contains two kinds of addi-
tional terms: the logarithmic contribution and the terms p
portional tos2. The former is proportional to 1/N and hence
destroys pinning whenxN is finite leading to Eq.~30!; the
latter are active whens is nonvanishing and cause the dec
of the pinned state over the characteristic time~31!. It is
important to stress that the pinning regime occurs wh
phase separation has already taken place but is still inc
plete and therefore has nothing to do with the usual meta
bility present during phase ordering, which decays via nuc
ation.

C. Surface diffusion regime

In the SSL, after the end of pinning the structure fac
has the form~14!. During this regimeC(k,t) is sharply
peaked aroundkm(t); this allows the evaluation ofS(t) and
S2(t) by the saddle-point technique, yielding

S~ t !;L2d~ t !expS L4~ t !

4@L4~ t !1L4~ t !#
D ~32!

and

S2~ t !;L22~ t !S~ t !. ~33!

Requiring the saturation ofS(t) to its equilibrium valueS`

and neglectingL(t) with respect toL(t), for sufficiently
largex/s2, one has
m-

l

e

s

ed

e

-

n
-

ta-
-

r

Ld~ t !;eL
4~ t !/4L4~ t !. ~34!

According to its definition~13!, to leading order inS`2S(t),
L2(t) can be written as

L2~ t !52NDE
0

tS b
@S1/2~t!2S`

1/2#@12S~t!#

4S1/2~t!

1
s2

9

S2~t!

@12S~t!#2D dt, ~35!

with b52/@N(12S`)#. Then, neglecting for sufficiently
small Kuhn lengths the term containingS2(t) in Eq. ~35!
and settingS`.1, we obtain

L2~ t !;L2~ t0!1E
t0

t

@12S1/2~t!#2dt, ~36!

wheret0 is the crossover time from pinning to this regime.
the same way, one finds

L4~ t !;L4~ t0!1E
t0

t

@12S1/2~t!#dt. ~37!

Assuming thatL(t) andL(t) diverge with time, we neglec
the constant terms in Eqs.~36! and ~37!. Equations~34!,
~36!, and~37! admit then the solution

L~ t !;t1/6, L~ t !;t1/6~ lnt !1/4, ~38!

with 12S1/2(t);t21/3, consistently with the assumption o
divergingL(t) andL(t). As a consequence, using Eq.~15!,
km(t);t21/6(lnt)1/4.

During this regime the dynamics is governed byL(t),
which dominates overL(t). With the help of definitions~11!
and~12! it is clear that during this stage the system beha
as if the square gradient coefficientk were independent ofc,
i.e., as ifs50. With that condition Eq.~10! becomes per-
fectly analogous to the equation of motion for the largen
approximation of a Ginzburg-Landau system with a fie
dependent mobilityM (c)512c2; it is easily recognizable
that also in this case the analytical solution yiel
km(t);t21/6. This similarity with the Ginzburg-Landau sys
tem helps in the understanding of the physical meaning
this regime. The scalar case for the small-molec
Ginzburg-Landau problem with nonconstant mobility h
been studied by means of a Lifshitz-Slyozov approach@13#
and numerical simulations@14#. The outcome of such inves
tigations was that whenn51 the typical length grows ast1/4

and the dominating growth mechanism is surface diffusi
This leads to the conclusion that also for a polymeric mixtu
the time regime withkm(t);t21/6 in the large-n model re-
flects a surface diffusion regime in the corresponding sc
model withkm(t);t21/4. This is why~with an abuse of lan-
guage! we termed this regime as surface diffusive: Clear
no surfaces exist in the large-n model and no diffusion along
them takes place. Nevertheless the behavior of the largn
model clearly reflects the prevalence of this growth mec
nism in the corresponding scalar system.
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D. Asymptotic regime

The behavior illustrated in the preceding subsection is
yet asymptotic sinceL(t);t1/6 cannot dominateL(t);t1/4

forever. When this occurs, the system enters the very
stage of its temporal evolution. What follows is valid also f
the WSL; in such a caseL(t) andL(t) are always propor-
tional to t1/4 and the asymptotic regime begins right after t
linear one.

The analytic treatment of this late regime is again ba
on the saddle-point technique, yielding Eq.~32!, and the re-
quest that the order-parameter field lies on the ground-s
manifold S(t)5S` . From Eqs. ~11! and ~12!
L(t);L(t);t1/4 and then Eq.~32! gives

L4~ t !;L4~ t !lnt; ~39!

therefore

km~ t !;~ lnt/t !1/4. ~40!

Here the two lengthsL(t) andkm(t) diverge in the same
way up to a logarithmic factor yielding multiscaling pre
cisely as for phase ordering in large-n ordinary mixtures@4#
and showing that the two models fall into the same univ
sality class. Again, we can use the comparison with ph
separation in ordinary mixtures to extrapolate results for s
lar polymer blends: On the basis of what is known@11,15#
about small-molecule systems, a scaling regime is expe
to be obeyed also for polymers for finiten, characterized by
a single diverging length growing ast1/z, with z54 for the
vector order parameter andz53 in the physically relevan
casen51. The coarsening mechanism prevailing during t
stage in scalar systems is bulk diffusion: Although stron
suppressed in the SSL, it is not vanishing and, being ass
ated with a faster domain growth, finally dominates ov
surface diffusion.

It is interesting to remark that the model for polymers h
the same asymptotic behavior of small molecules, but
nontrivial reasons. In ordinary mixturesL(t), the dominating
length during the late stage, is formed by the product o
constant mobility times a constant square gradient coe
cient. For polymer blendsL(t) is the result of a nonconstan
M (c) times the field-dependent part ofk(c): The expres-
sion for L(t) is the same in the Ginzburg-Landau case
cause the order-parameter dependence in the two factors
cels out. Therefore, even if the asymptotic behavior of t
model for polymer blends is the same as for small molecu
it is not correct to say that the field dependence ofM andk
is irrelevant.

IV. NUMERICAL RESULTS

In this section we present the results of the numer
solution of the large-n model. The solution is performed b
simple iteration of the discretized version of Eqs.~7!–~9!
with d53 and 1024 values ofk. The diffusion coefficientD
is chosen equal to 4 and the number of monomers is fixe
N50.253105. The value of the parameterx is changed over
many orders of magnitude, so that we can clearly distingu
the different time regimes.

We start by considering the very early stages. The beh
ior of S(t) andS2(t) for very early times is shown in Fig. 1
t
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The initial decay ofS(t) follows very accurately the powe
law t23/4 found analytically. The same agreement is fou
for S2(t) with the decayt25/4. Notice that the crossover tim
is very close to the estimate based on Eq.~23!: t* .431022.

With regard to the following stages, in Fig. 2S2(t) and
km(t) are plotted versus time for values of the parameters
the weak segregation limit. The linear behavior is clea
visible, characterized by a constant position of the peak.
followed by a sharp transition to the asymptotic regime, d
ing which the two plotted quantities decay as power laws
km(t) is fitted with (t/ lnt)1/z, the computed exponent i
1/z50.25360.003, in good agreement with the theoretic
valuez54.

For deep quenches in the strong segregation limit,
situation is quite different~Fig. 3!. At the end of the linear
regime, the onset of the very-late-stage dynamics is prece
by the two preasymptotic behaviors mentioned in Sec.
During the first one the system undergoes an almost c
plete stop; therefore,km(t) remains at the value of the linea
regime, whileS2(t) shows a plateau that extends over ma
decades. This temporary stop in the evolution of the sys
is even better illustrated by plotting directly the structu
factor C(k,t) for different times during the pinning regim
~Fig. 4!. These curves are compared with the analytic expr
sion ~28! of Cp(k) in the pinning limit. Later the dynamics
restarts and is dominated by the time-dependent mobi
The peak position andS2(t) go to zero as power laws, in
good agreement with the expected behaviorkm;t21/6 and
S2;t21/3. The agreement is not perfect because the syste
already crossing over to the asymptotic behavior. The on
of this last regime can be delayed by makingx/s2 bigger,

FIG. 1. Top: log-log plot ofS(t) vs t for early times. The values
of the parameters areN50.253105, xN5103 l51/2, ands51.
Bottom: same plot forS2(t).
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678 57CLAUDIO CASTELLANO AND FEDERICO CORBERI
but this would also increase the duration of the pinned sta
making the surface diffusion regime numerically unrea
able. Finally, on times longer than those shown in the figu
both quantities smoothly cross over to the asymptotic beh
ior, which is the same as in the WSL.

The durationtp of the pinning is displayed in Fig. 5. In
the upper parttp is plotted versusx/s2 for N strictly infi-
nite, showing a power-law behavior whose measured ex
nent is 0.4960.01, in very good agreement with the analy
cal estimate of Eq.~31!. In the lower part the same quantit
computed fors50, is plotted versusxN, displaying an ex-
ponential dependence as predicted in Eq.~30!. In the end, all
figures confirm the analytical results discussed above and
existence of a complex structure of intermediate regimes
crossovers, as summarized in Table I.

V. DISCUSSION

The solution of the large-n model for phase-separatin
polymer blends leads naturally to a comparison with
analogous results for small-molecule systems. In this way
can identify which of the modifications introduced by th
macromolecular nature of the blend components are relev
We consider the effect of three modifications:~i! the mobil-
ity depending on the local order parameter and in particu
vanishing in pure phases;~ii ! the local potential having a
double-well form, but a logarithmic expression, as oppo
to the usual polynomial; and~iii ! the square gradient coeffi
cient in the free energy having an additional contributi
depending on the local order parameter, giving rise to t
new terms in the chemical potential. The first two differenc

FIG. 2. Top: log-log plot ofS2(t) vs t for a quench in the weak
segregation limit. The values of the parameters areN50.253105,
xN52.1, l51/2, ands51. Bottom: same plot forkm(t).
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FIG. 3. Top: log-log plot ofS2(t) vs t for a quench in the strong
segregation limit. The values of the parameters areN50.253105,
xN51012, l51/2, ands51. Bottom: same plot forkm(t).

FIG. 4. Plot ofC(k,t) vs t for the same parameters of Fig. 3 an
two different times separated by two decades, compared with
analytical expression~ 28!.
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57 679COARSENING AND PINNING IN THE SELF- . . .
are actually not restricted to polymer blends and can be c
sidered also for small molecules; the third is instead stric
related to the macromolecular nature of the mixture.

In the WSL our results confirm what was already know
from previous numerical simulations of the full continuu
equation@3#. The system belongs to the same universa
class of small molecule blends and all additional terms of
model turn out to be irrelevant during the whole dynami
process. This is not surprising when the scalar system
considered. In the WSL separated phases are not pure:
equilibrium order parameter in phase-separated domain
far from 21 and 1; in such conditionsM (c) andk(c) have
small local variations negligible compared to the avera
constant terms.

The situation is much more interesting in the SSL. It tur
out that all three modifications are relevant in this case. T
logarithmic expression forf FH pushes the minima of the
local potential close to21 and11 exponentially withxN.

FIG. 5. Top: log-log plot oftp vs x/s2 for N5` showing the
power-law divergence of the pinning duration. Bottom: lin-log p
of tp vs xN for s50, displaying that in this limittp diverges
exponentially. In all casestp was determined by choosinge51024.
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For these limit values the mobility vanishes and the evo
tion is pinned. During the subsequent regime the noncons
mobility is relevant since the evolution is governed byL(t),
which owes its time dependence to the order-parameter
pendence ofM (c). Finally, as already pointed out in Se
III D, the asymptotic stage is governed by the growing leng
L(t), which is formally the same as in the small-molecu
case, but is actually the result of the field dependence
M (c) andk(c).

Our aim is also to make statements about the real syste
not only about the large-n approximation to their tempora
evolution. Therefore, a word must be said about the delic
problem of the connection between the systems we wan
study~scalar order parameter! and those we are able to solv
analytically ~vectorial order parameter with an infinite num
ber of components!. For the small-molecule case we alrea
know that some properties of the solution for large-n model
do not hold for scalar systems. One of them is the multisc
ing symmetry of the structure factor for long times: For fin
n scaling symmetry holds. Another difference is the value
the dynamical exponentz, which is known to be 3 for scala
systems and 4 when the order parameter is vectorial~includ-
ing the large-n model!.

These differences are known and therefore can be ta
into account easily. More dangerous may in principle be
other difference between the large-n and the corresponding
scalar model: The latter forms ordered domains separate
well-defined interfaces; the former does not support int
faces and actually evolves towards a state that is not t
ordered@5#. This difference could be critical for a polyme
blend in which interfaces play a key role, through the fie
dependence of the mobility and of the square gradient c
ficient. Nevertheless, we believe that in this case the pic
provided by the large-n model is a close representation
what actually goes on in scalar systems.

This conclusion relies on the comparison of our resu
with those obtained for small-molecule Ginzburg-Land
systems within the large-n approximation with constant an
nonconstant mobility. All the behaviors we find can be fou
also in large-n models for Ginzburg-Landau systems, whe
they are interpreted as the result of different physical mec
nisms governing growth. By analogy we can describe
large-n results as the effect of the interplay of competi
coarsening mechanisms for scalar polymer blends. The
ning regime, the subsequent regime characterized byz56,
and the asymptotic stage are all very clearly interpreted
terms of the growth processes occurring in scalar polym
mixtures.

In particular, two are the mechanisms driving coarsen
. The
TABLE I. Summary of the time dependence of the important quantities during the different stages
third and fourth time regimes are observable only whenxN@1 andx/s2@1.

Regime Early scaling Linear Pinned Surface diffusion Asymptotic

S(t) t2d/4 exp(t) const const const
S2(t) t2(d12)/4 exp(t) const t21/3(lnt)21/2 t21/2(lnt)21/2

km
21(t) const const const t1/6(lnt)21/4 (t/ lnt)1/4

L(t) t1/2 t1/2 const t1/6(lnt)1/4 (t lnt)1/4

L(t) t1/4 t1/4 const t1/6 t1/4
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680 57CLAUDIO CASTELLANO AND FEDERICO CORBERI
in binary blends. The first is bulk diffusion, also called t
Lifshitz-Slyozov or evaporation-condensation mechanismA
molecules evaporate from high-curvature regions ofA-rich
domain interfaces; they diffuse inB-rich regions and con-
densate onA-rich domains with lower curvature. This pro
cess makes smaller domains shrink and larger ones gro
is associated with at1/3 growth law becomingt1/4 for n.1.
The competing mechanism is the diffusion of molecu
along domain surfaces in order to minimize the interfac
energy. This process has the effect of changing the sh
~but not the volume! of single domains and is associated w
z54 (z56 in the corresponding large-n limit !. The slower
growth law explains why surface diffusion is not observed
usual small-molecule systems and in polymers in the W
Bulk diffusion always prevails. For deep quenches inste
both mechanisms are slowed down, but in different fashio
Surface diffusion depends little on temperature and is o
weakly suppressed whenT→0. On the other hand, th
evaporation process needed for the Lifshitz-Slyozov mec
nism is activated and therefore exponentially inhibited
deep quenches: Its probability is proportional
exp(2DF/kBT) and the free-energy change involved by t
evaporation of a macromolecule isDF;kBTxN. In this way
we can interpret the succession of stages occurring in
SSL: When both growth mechanisms are inhibited the s
tem is pinned; later growth starts, driven by surface dif
sion, which is slow but only weakly suppressed. Eventua
bulk diffusion prevails and phase separation enters its
stage.

Within this context it is difficult to understand why th
pinning limit requiresx/s2→` in addition toxN→`. It is
plausible that the additional condition is required only for t
large-n model and does not apply to scalar systems. Thi
suggested by the observation that the conditionx/s2→` is
needed in order to neglect the term proportional toS2(t) in
Eq. ~10!. Such a term appears in the equation with same
of those derived from the local potential in the free ener
However, it actually comes from the nonlocal part of the fr
energy: It becomes ‘‘local’’~i.e., not proportional tok2) only
as effect of the large-n limit. It is very likely that in the
scalar case the evolution freezes even ifx/s2,`.

We finally discuss the relevance of the previous result
the interpretation of the pinning phenomenon that has b
observed in off-critical quenches. Experiments show t
some polymeric mixtures quenched in the unstable regio
their phase diagram dramatically change their behavior
pending on the average concentration of the blend com
nents@16,17#. When the concentration is critical growth pro
ceeds as usual. When concentration is sufficiently off criti
coarsening starts but later stops, before the system rea
equilibrium, in a frozen configuration with partially sep
rated phases. The specific mechanism responsible for
phenomenon is still poorly understood and this topic h
been the subject of discussion recently@18,19#. The conjec-
ture that inhibition of bulk diffusion due to free-energy ba
riers may play a fundamental role has been put forth@16#,
but so far no convincing test of this hypothesis has b
done: Direct numerical integration of the full equation
motion is easily performed only in the WSL and no pinni
has been detected@19#; for deep quenches spurious nume
cal instabilities arise. Using the large-n limit approximation
; it

s
l
pe

:
d
s.
ly

a-
r

e
s-
-
y
te

is

le
.

e

n
n
t

of
e-
o-

l
hes

is
s

n

we are able to investigate the strong segregation limit. Fr
our study a plausible explanation of the experimental e
dence comes out. For extremely deep quenches all gro
mechanisms are suppressed and the system is pinned
configuration out of equilibrium. This is the pinning de
scribed in Sec. III B and does not depend on concentrat
i.e., it happens also for critical quenches. It is very unlike
that this kind of pinning is observed in experiments since
probably requires unrealistically low temperatures. The p
ning phenomenon observed experimentally is instead m
likely related to intermediate values ofxN, such that bulk
diffusion is inhibited while surface diffusion is not. Thi
would explain both the unarrested growth for critic
quenches and the freezing for off-critical ones. When
concentration is critical an interconnected pattern is form
for both phases and surface diffusion can drive the system
macroscopical phase separation. When the quench is s
ciently off critical instead, the minority phase forms nonpe
colating droplets embedded in a matrix of the major
phase. Surface diffusion can only lead to a partial ph
separation and coarsening stops when droplets are sphe
However, on much longer times, the residual bulk diffusi
should drive the system to complete phase separation
order to confirm this scenario further work on the numeri
solution of the scalar order-parameter equation in the SS
in progress. More experiments, aimed at verifying the p
diction that coarsening should restart for very long tim
after the pinning in off-critical quenches, would also be ve
helpful.
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APPENDIX A

We consider the Flory–Huggins–de Gennes free-ene
functional F(c) and the mobilityM (c); in order to gener-
alize them to the vector order-parameter case we req
FV(cW ) and MV(cW ), the vectorial counterparts of the fre
energy and of the mobility, to beO(n) symmetric functions
of cW (x,t). With this position the field dependence occu
through the modulus of vector quantities, namely,ucW (x,t)u
5@(b51

n cb
2(x,t)#1/2 and u¹cW (x,t)u5$(b51

n @¹bca~x,t)] 2%1/2.
In the large-n limit if one requires the single componen
ca(x,t) to remain finite, the square modulus of vector qua
tities must be normalized by 1/n, in order to keep it finite.
Hence the whole field dependence ofFV(cW ) and MV(cW )
occurs in the vectorial case throughu c̄ (x,t)u and u¹c̄ (x,t)u,
where c̄ (x,t)5n21/2cW (x,t). Moreover, one requiresFV(cW )
to be an extensive quantity in the number of componentsn.
In summary, a proper generalization to the vector case
achieved by substituting everywherec(x,t) and u¹c(x,t)u
with u c̄ (x,t) andu¹c̄ (x,t)u, respectively in Eqs.~1!–~3! and
~5! and multiplyingF(c) by n. We obtain

FV~cW !

kBT
5nE dxH f FH~ u c̄ u!

kBT
1k~ u c̄ u!U¹c̄~x,t !U2J ,

~A1!
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57 681COARSENING AND PINNING IN THE SELF- . . .
wherek(u c̄ u) and f FH(u c̄ u) are still given by expressions~2!
and~3!. The Cahn-Hilliard equation for the time evolution o
a generic componenta of the vector fieldcW (x,t) reads

]ca~x,t !

]t
5¹•FMV~cW !¹

dFV~cW !

dca
G , ~A2!

where MV(cW )5M (u c̄ u) is given by Eq.~5! and we have
neglected thermal noise as discussed in Sec. II. Then,
sidering a symmetric blend, the Langevin evolution
ca(x,t) is obtained

]ca~x,t !

]t
5

ND

2
¹•H @12u c̄ ~x,t !u2#

3¹F 1

4N
lnS 11u c̄ ~x,t !u

12u c̄ ~x,t !u
D ca~x,t !

u c̄ ~x,t !u
2

x

4
ca~x,t !

2S l2x1
s2

9@12u c̄ ~x,t !u2#
D ¹2ca~x,t !

2
s2c̄a~x,t !

9@12u c̄ ~x,t !u2#2U¹c̄a~x,t !U2G J . ~A3!

For n51 one recovers Eq.~6!. In the large-n limit, summing
over vector components averages the system over an
semble of configurations and hence

lim
n→`

u c̄ ~x,t !u25 lim
n→`

1

n (
b51

n

cb
2~x,t !5^ca

2~x,t !&[S~ t !,

~A4!

where angular brackets denote the ensemble average, t
lational invariance has been assumed, andS(t) does not de-
pend ona due to internal symmetry. Analogously

lim
n→`

u¹c̄a~x,t !u25 lim
n→`

1

n (
b51

n

@¹bca~x,t !#25^@¹ca~x,t !#2&

[S2~ t !. ~A5!

Hence Fourier transforming to reciprocal space, the evo
tion equation for the order-parameter field reads

]c~k,t !

]t
52

ND

2
@12S~ t !#k2H 1

4NS1/2~ t !
lnS 11S1/2~ t !

12S1/2~ t !
D

2
x

4
1

s2

9

S2~ t !

@12S~ t !#2

1S l2x1
s2

9@12S~ t !# D k2J c~k,t !, ~A6!

where the component indexa has been dropped.

APPENDIX B

In this appendix we derive the expressions~30! and ~31!
for the duration of the pinned stage when the pinning limi
n-
f

n-

ns-

-

approached. We definetp with reference to the behavior o
the quantityS2(t). As can be seen in Fig. 3,S2(t) displays a
plateau during the pinned stage. More precisely, it reach
maximum for t5tp at the end of the linear regime and d
creases extremely slowly until the crossover timet5tp1up ,
when the pinned stage ends and the system enters the s
quent time evolution characterized by a more rapid~power
law! decrease ofS2(t). A quantitative definition ofup can be
obtained from the relative variation ofS2 by setting

S2~ tp!2S2~ tp1up!

S2~ tp!
5e, ~B1!

wheree is an arbitrarily fixed small number. SinceS2(t) is
approximately constant during the pinned stage one has

S2~ tp1up!5S2~ tp!1
]S2~ t !

]t U
t5tp

up ~B2!

and therefore, using Eq.~B1!,

up52eS2~ tp!F ]S2~ t !

]t U
t5tp

G21

. ~B3!

up is the actual duration of the pinned regime, but it shou
be noticed that in the pinning limit]C/]t is proportional to
xN, which goes to infinity. All times are divided by thi
factor and hence vanish. In order to compare the duratio
the pinned stage for different values ofxN, up must be res-
caled by the appropriate intrinsic time factor 1/xN; we there-
fore define the durationtp of pinning as

tp5xNup . ~B4!

The derivative in Eq.~B3! can be computed by considerin
that C(k,t5tp).Cp(k) defined in Eq.~28! so that

]S2~ t !

]t U
t5tp

5E ddk

~2p!d
k2

]C~k,t !

]t U
t5tp

.2xND~12Sp!~l2S6p2S4p/4!, ~B5!

where

Snp5Sn~ tp!5E ddk

~2p!d
knCp~k! ~B6!

are known quantities. By inserting Eqs.~B3! and ~B5! into
Eq. ~B4!, one obtains an expression fortp

tp.
eS2p

D~12Sp!~l2S6p2S4p/4!
, ~B7!

where only the valueSp of S(t) during the pinned stage
remains to be determined. This is calculated by impos
that

]S~ t !

]t U
t5tp

50. ~B8!
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When evaluating this condition the outcome depends on h
the pinning is approached, i.e., on the order of the lim
xN→` andx/s2→`. When one takesx/s2→` with large
but fixedN, one has

052xND~12Sp!H F21/41
1

4xN
lnS 2

12Sp
1/2D GS2p

1l2S4pJ . ~B9!

With simple algebra one obtains

12Sp54expH 2xNFS2p24l2S4p

S2p
G J ~B10!

and therefore

tp;expH xNFS2p24l2S4p

S2p
G J . ~B11!
.

r,

cr

n

34
w
s
Letting insteadxN→` with nonvanishings2,

052xND~12Sp!H F2
1

4
1

s2

x

S2p

9~12Sp!2GS2p

1Fl21
s2

x

1

9~12Sp!GS4pJ , ~B12!

yielding

12Sp5A S2p
2

9~S2p/42l2S4p!
S x

s2D 21/2

~B13!

and therefore

tp;S x

s2D 1/2

. ~B14!
ho,

ys.
,

e
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